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Abstract
A set of conditional probabilities is introduced by conditioning in the
probability measures from an exponential family. A closure of the set is
found, using previous results on the closure of another exponential family
in the variational distance. The conditioning in the exponential family of
all positive probabilities on a finite space is discussed and related to the
permutahedra.

1 Introduction

A conditional probability space consists of a measurable space ({2, A), nonempty
set B C A and family P of probability measures (pm’s) P(-|B), B € B, on
(12, A) that satisfy P(B|B) = 1 whenever B € B, and

P(A|C)=P(A|B)- P(B|C) whenever Ac A, B,C € Band AC BCC.

When viewed alternatively as a nonnegative function on A x B, the family P
is called the conditional probability (cp) on (£2,A,B) [12, 13, 8, 9, 3]. In this
work, the set B is assumed to be finite.

Let p be a finite nonzero measure on (§2,A), f: 2 — R? an A-measurable
function and fu the image of u under f, fu(D) = u(f~1(D)), D C R? Borel.
The log-Laplace transform A, ; of fpu,

A r(0) = lnfQ eI dy = f]Rd e ) fu(dr), 9 eRY,

is a convex function, finite on its nonempty domain dom(A,, ¢) [14]. The full
exponential family £, 5 determined by p and f consists of the pm’s @, ry with
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the p-density (" =4us) and ¥ € dom(A, ;) [1, 2]. The family is endowed
here with the topology of the variational distance |P — Q| of pm’s P and Q.

This work proposes to study sets of c¢p’s that are analogous to the exponential
families. Let p be a measure on ({2, A) that is positive and finite on B, thus
0<u(B)<+oo, B € B, and 1i® be the restriction of p to B, u?(A) = u(ANB),
A € A. Tf ¥ belongs to dom(A,,z ;) for every B € B then the family Q7 ; , of
pm’s defined by

QE,f,ﬁ(AlB):QpB,f,ﬂ(A)) AE‘AaBE%a

is a cp on (§2, A, B) by Remark 2.1. The main object of interest here is the set

er = {Qf,f,ﬁz 19 (S ﬂBEB dom(AuB’f)} .

When B = {2} this set is effectively the same as £, ¢. It contains a cp P if and
only if P(:|£2) = Q1,9 for some ¥ € dom(A, ). Sets of cp’s are endowed with
the topology of the sum distance ) 5 5 |P(-|B) — Q(-|B)| of cp’s P and Q.

Basic observations on the sets 035’7 ¢ are collected in Section 2. The main idea
is to transform a cp P to the product of P(:|B) over B € B, denoted by IIP.
The image HL’E . of ¢® o] is recognized to be a full exponential family, see
Lemma 2.3. Th1s famlly is then reduced in two steps, see Lemma 2.4. A one-
to-one canonical parametrization of the set &% wf 18 described in Remark 2.7.
Another parametrization follows from Lemma 2 9.

The closure of &2 ... 1s found in Theorem 3.3 applying the results of [6]. Under
some assumptions on p and f it is homeomorphic to a convex set, see Corol-
lary 3.5.

Section 4 presents the special case of a finite {2 and the family &, ; of all
positive pm’s on (2. Relations to the algebraic approach of [11] are discussed. If
B is the family of all nonempty subsets of 2 then the closure of QE 7 exhausts
all cp’s and can be parameterized by the points of a permutahedron of the
dimension |£2] — 1, as found earlier in [10].

2 Basic observations

If a measure p on (£2,A) is positive and finite on B then the mapping

uANB) _ pB(A)
w(B) T uP2)

(A|B) — AeA, BeB,
gives rise to a cp. For a necessary and sufficient condition on a cp to be generated
from a measure as above see [4, (6.3), p. 351].

Remark 2.1. The assumption that w is finite on B is equivalent to the finiteness
of w(UB) where UB = (Jgcp B, using that B is finite. If v denotes the
restriction of 4 to UB then dom(A, ) is equal to the intersection of dom(A,5 ¢)
over B € B. For ¢ in this domain

Qu,+.9(ANB)
G o B = Jy e du /feﬁf du” = Que g9(4),  A€A,
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thus Qf’,fﬂ is the cp on (2, A, B) generated from @, ;». Hence, the set @if
can be constructed alternatively from &, ; by conditioning to the sets B € B.

Lemma 2.2. The mapping I1 is a homeomorphism of the family of cp’s into
the family of product pm’s on (2% A%).

Proof (sketch). The sum distance between cp’s P, @ majorizes the variational
distance between IIP and ITIQ. The variational distance between two products
of pm’s majorizes the variational distance between any two marginal pm’s. [

For a finite measure y on (§2,A), let us be product of the restrictions u?
over B € B. For a function f: 2 — R? let fg map an element wgp = (wp)pes
of 2% to (f(wp))pes, an element of (R4)®. The function f is always assumed
to be A-measurable. Let X map (zp)pes € (]Rd)93 to ) pes TB € RY.

Lemma 2.3. If p is positive and finite on B then
(i) Aus. 55 = EBE'B wB.f
(i1) IQ}, 19 = Quy.5ps.0 Jor 9 € dom(Ap, y,)
(iii) TI restricts to a homeomorphism between € ; and €., sy, -

Proof. For 9 € R¢
Ay ofs (¥) =In fms el dus = 1In foﬂs HBeBew’f(wB)) pp (dws)

using (9, X/ (ws)) = ¥ pes (9, f(ws)). Hence,

Ny S (V) =In HBeB IQ el f W) MB (dw) = ZBe'B HB,f(ﬂ)

which proves (i). It follows that dom(A,., sy, ) is the intersection of dom(A,5 ¢)
over B € B. For 9 in the domain the product pm HQE’, 7,0 18 absolutely contin-
uous w.r.t. up and by (i) has the density

e 4Q% 1.5 (1B) [ du® (w3) = TIpen oxp [0, f(wp)) = Aun ;1 (9)]
= exp[(V), Ifp (wn)) — Aun 2p5 (9] = dQuy 5,0/ dpn (ws)
thus (i) holds. Then (i) follows by Lemma 2.2. O

Lemma 2.4. If i is positive and finite on B then
(1) Apy 2fs = Apnpsn, > = Asfaps.id

where id denotes the identity mapping on RY, and for ¥ € dom(A,., s, )
(ii) [3Qus. 250 = Qrpps 20
(ii1) XfpQuy o559 = 2Qfpps, 2,0 = QSfsus,ido-

A proof is standard and omitted.

The convez core cc(v) of a finite Borel measure v on R? is intersection of the
convex Borel sets D C R? with v(R%\ D) =0 [5]. Let ri(v) denote the relative
interior of cc(v).
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Lemma 2.5. If u is finite on B then
(i) cc(fpps) = HBGB CC(fNB)
(i1) cc(Efnpn) = Sec(fopin) = X pen cc(fu®).

Proof. Since fgus is the product of the measures fu? over B € B the first
equality follows from [5, Lemma 7]. The Y-image of a product measure is the
convolution of marginals. Hence, the second assertion is a consequence of [5,
Corollary 8]. O

Corollary 2.6. Lemma 2.5 remains valid when cc is replaced by ri.

For a convex set D C R? let /in(D) denote the linear space generated by the
differences x — y with x,y € D and 7p the orthogonal projection onto lin(D).
In the case D = cc(v) the abbreviations /in(v) and m, are used.

Remark 2.7. If a measure y on (2,A) is nonzero and finite, and f: 2 — R?
then ¥ € dom(A,, 5) and 7w, (¢ —6) = 0 imply 6 € dom(A,, ). The exponential
family £, s is bijectively parameterized by 7¢,(dom(A, ¢)). If follows on account
of Lemma 2.3 that €7 ; is bijectively parameterized by 7y, ., (dom( Ay sy, ))-
Here, the projection is onto /in(X fg pus ) which is the sum of /in(fu?) over B € B,
by Lemma 2.5 (ii).

Remark 2.8. The log-Laplace transform A, ; is differentiable at any ¢ from
the interior of its domain and VA, ¢(9) = [, fdQ,.rs [1, 2]. If the domain
is open then VA, ¢ gives rise to a diffeomorphism between the relatively open
sets 7, (dom(Ay, r)) and ri(fu). Thus, the mapping P +— [, f dP is defined for
every P € &, 5, and it is a homeomorphism between &, y and ri(fu), see also
[6, Corollary 1].

Let M; denote the composition of two mappings
P—TP+ [, Yfs dIIP

defined at any cp P such that the integral exists. Rewriting the integral to

Jos Cpes fwn) Tpen Pldws|B)

the existence is equivalent to P(-|B)-integrability of f for B € B, in which case

MiP =3 pes [, f(w) Pdw|B).

Lemma 2.9. If dom(A,, sy, ) is open then My restricts to a homeomorphism
between L’E?if and ri(Xfp ps) =Y geg r(fu?).

Proof. The restriction is a composition of two homeomorphisms. The first one
comes from Lemma 2.3 (iii), between € ; and €,,,, s, - The second one makes
homeomorphic &, sf, and ri(Xfg us), by Remark 2.8. It remains to refer to
Corollary 2.6. O
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Example 2.10. Let 2 = {0,1}2, A be the algebra of all subsets of {2 and
B = (%) consist of all two-element subsets of £2. Let u be the counting measure
on 2 and f the embedding of {2 to R?. The family £, ; consists of all positive
product pm’s on {2 and the set Gzif of the cp’s that are generated from these
pm’s, see Remark 2.1. Denoting by 4, the Borel pm on R? that is supported by
x € R?, the fp-image of pp is the product

[60,0701,0)] X [0(0,0y10 (0,17 ] X [00,0H0 1.1y ] X [01.07H0 0,1y X [61,0H01,1)] X [0,y H0 1,1y ] -

Then, X faup is the convolution of the six measures. It is equal to the linear
combination of §,’s where x runs over the points of the configuration below and
the coefficients in the combination correspond to the labels of the points.

The shaded hexagon is the convex core of Yfgug. Lemma 2.5 expresses the
hexagon as the sum of the edges and diagonals of the unit square. Further,

MiP =3 pep 2 weo f(w) P(w|B)
= (1,0)[P(10]00,10) + P(10/10,01) + P(10/10,11)]
+ (0,1)[P(01]00,01) + P(01]10,01) 4+ P(01]01,11)]
+ (1,1)[P(11]00,11) 4+ P(11/10,11) + P(11|01, 11)]

where e.g. P(1000,10) is an abbreviation for P({(1,0)}|{(0,0),(1,0)}). By
Lemma 2.9, the mapping My restricts to a homeomorphism between G?i ¥ and
the interior of the hexagon.

3 Closures of the families (’Si f

Given a convex set D in a Euclidean space, its nonempty convex subset F' is a
face if each segment contained in D with an interior point in F’ is contained in F'.

Lemma 3.1. If p is finite on B and F is a face of cc(Xfppus) then
(i) Fy = XY (F) Ncc(fpps) is a face of cc(fnus)
(i)) Fy = [ ges Fx,B where Fx p is a unique face of cc(fu?)
(iii) SFy = F.
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Proof. The assertions follow from Lemma 2.5 and basic convex geometry. [
Let pip r = [[ ges nF where pF' is the restriction of p to BN f~!(c/(Fy,5)).

Lemma 3.2. If ;1 is finite on B and F is a face of cc(Xfppus) then us p is
nonzero and finite and Xfgpus p = (X fpus ).

Proof (sketch). Since F is a face, thus a nonempty set, every Fy p is a face of
cc(fuP) by Lemma 3.1. Therefore fu?(cl(Fx g)) = uBF(£2) is positive by [5,
Corolary 3]. Thus, ug r is nonzero. Since p is finite on B every fu? is finite,
and the finiteness of g r follows.

The equality is a consequence of feug = (fgug)x_l(d(F)). Since feps,r
is the restriction of fzup to [[gcp c/(Fx B) = c/(Fx) the aim is to prove that
faus (X (c(F))\ c/(Fx)) = 0, using that the two sets are in inclusion.

If Fy = cc(feps) then c/(Fy) has the complement of fgpup-measure zero
by [5, Lemma 1]. Otherwise, F' is not equal to D = cc(Xfpug). Assume first
that F' is exposed, thus a nontrivial supporting hyperplane H to D exists such
that F = HN D. Then, ¥ *(H) is a supporting hyperplane of cc(fzus) and
YN H)Nee(fpps) = Fx. By [6, Lemma 1], faus(2  (H) \ c/(Fx)) =0 and
the equality holds. If F is not exposed then it can be approached by a chain
of exposed faces and the equation obtains from the corresponding equations in
the chain. Details are omitted. g

Where D and = are nonempty convex subsets in a Euclidean space, the
concept, of Z-accessible face of D was introduced in [6, Subsection 2.5]. The
definition is rather technical and not repeated here, using later only the simple
facts that D is always a S-accessible face of D and every face is R?-accessible.

For a face F of cc(Xfpus) the family Qf’fﬁ of pm’s given by

B, F
Qu’if,ﬁ('|B) = QHB’F,f,ﬁa B e 37

is a cp on (£2,A4,B) by Remark 2.1 where {B N f~(c/(Fx)): B € B} plays
the role of B. In particular, if F' equals the convex core then Qf’fﬁ =Q, 109

Theorem 3.3. If u is positive and finite on B then the closure of Gzif 1s the
union of the families

in’f = {Qifﬁ: ve C/(WF(dom(AM'B,EfB NN dom(ANB,F7Ef’B)}
over the dom(A,, xf,)-accessible faces F' of cc(Xfppus).

Proof. By assumption v = X fgug is nonzero and finite, thus [6, Theorem 2]
applies to the full standard exponential family &, ¢ with = = dom(A, j4) and
implies

c(Evia) =U{Qurigw: V€ cl(rp(2))Ndom(Ay, ia)}
where the union is over the Z-accessible faces F' of cc(v) and vr denotes the
restriction of v to ¢/(F). By Lemma 2.4 (i), A,, s, equals A, g so that the
above union is over the same family of faces as in the assertion of the theorem.
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Lemma 3.2 implies that vp is the X fg-image of the nonzero and finite prod-
uct measure pgp r. Hence, A, jg equals A, . s, by Lemma 2.4 (i). Tt follows
that in the above union 1 ranges over the same parameter set as in the assertion
of the theorem. Since @, 40 is the Xfg-image of Q. . 550, it is possible
to conclude by Lemma 2.4 (%ii) that

C/(gll«lhzf’ﬁ) = U {QH’B,F7EfBﬂ9: S C/(TrF(dom(E))) N dom(AH’B,F7EfB)} .

On account of Lemma 2.2, it suffices to prove that Q. . sy, 0 equals l'IQf’_’f19
but this follows from Lemma 2.3 (ii). d

Corollary 3.4. If A5 ; is everywhere finite for all B € B then

_{Qufﬁ 9 € lin(F )} and cl(€ uf) U@

where the union is over all faces F' of cc(Xfgun). The mapping My restricts
to a bijection between c/(ézif) and Y gy cc(fu®).

Proof. The assumption implies that dom(A,, . vt,) = R? for all faces F and
that all faces are accessible. To prove the second assertion, Lemma 2.3 (iii) is
applied to pus, r in the role of pg. Then, IT restricts to a bijection between @B’F
and &, . vfs. By Remark 2.8, My maps GH + bijectively onto r(Xfeus, F)
This set equals ri(F') by Lemma 3.2. It follows from Theorem 3.3 that My maps
c/(@?i #) bijectively onto the union of ri(F). The union is equal to cc(Xfsus),

and thus to the sum of cc(fu?) by Lemma 2.5 (ii). O

Corollary 3.5. If EBEB cc(fuP) is bounded and locally simplicial then My
restricts to a homeomorphism between c/(ég”f) and this sum.

Proof. The boundedness implies that the mapping P +— fmj X fpdP is contin-
uous on c/(€,, xf, ). Its inverse is continuous due to the second assumption,
see [7, Remark 5.9]. By Lemma 2.2, the assertion follows. O

Example 3.6. Let (£2,A,B), u and f be as in Example 2.10. The segment
F ={(t,1): 2 <t < 4} is a face of the hexagon cc(Xfgugp). Then Fy is the
square
{((¢,0),(0,0),(0,0),(1,0), (1,0),(r,1)): 0 < t,r < 1}
and Y feup r is the convolution
[6(0,0)F01,0)] * 80,0y * O0,0) * G(1,0) * 1,0 * [00,1) +01,1y] = Oy + 20,1y + Fan) -

The cp P = Qu fﬁ( |B), ¥ = (t,0) € lin(F), from c/(@if) is given by

P(10]00,10) = P(11[01,11) =

t
T+el
P(00]00,01) = P(00]00,11) = P(10|10,01) = P(10[10,11) = 1.

The closure of @E’ 7 consists of the family itself and 16 families corresponding
to all vertices and edges of the hexagon.
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4 Discussion

In this section, the space (2 is finite, A is the algebra 2 of all subsets of £2, u is
the counting measure on (2 and f maps £2 to R? such that f(w) is the vector
with the w-th coordinate equal to 1 and the remaining ones to 0. The family
&, consists of all pm’s P on {2 that are positive in the sense P(w) > 0, w € {2

For B C (2 the measure fu” is concentrated on the linearly independent set
f(£2), and hence cc(fuP) is the simplex Ap spanned by the set.

Example 4.1. If 2 = {0,1,...,m}, m > 1, and B = (g) then > 5.5 Ap is
the sum of all segments with the endpoints in f(2). This is the polytope known
under the name permutahedron [16], equivalently defined as the convex hull of
all the points (p(0), p(1),...,p(m)) where p is any permutation of 2. Assume
Ay,..., Ay is an ordered partition of 2 such that w < w’ for w € A;, W' € A;
and 1 <7 < j < k. The convex hull of the points (p(m),...,p(1), p(0)) where p
is any permutation of (2 that satisfies p(A;) = A4;, 1 <14 < k, is a face F of the
permutahedron. It is the sum of the faces

Ap, if BC A; forsome 1 <i<k,
Frp= .
{f(w)}, otherwise,

over B={w,w'} € (g) with w < w’. Hence, for ¥ = (V,,).cn € R?

eIh/[e’h—f—ew’], if BC A; for some 1 <i<k,

1, otherwise .

QF(w|B) = {

Each cp of c/(ézif) has this form up to a permutation.

Remark 4.2. Let (23 denote the set of ordered couples (w|B) with w € B € B.
For B C A nonempty, a cp P on ({2, A, B) is uniquely given by its nonnegative
values P(w|B), (w|B) € 2. They are constrained by > P(w|B) = 1,
B € B, and

Pw|C)=P(w|B) >, PW'NC), w€ B CCand B,C € B.

weB

By Remark 2.1, P € L’Ef’) s if and only if there exists a positive measure on {2
that generates P. It follows from the general results of [4, (6.3), p. 351] that this
takes place if and only if all P(w|B) are positive and P satisfies the polynomial
constraints

[[i=: P(Ai|Bi) = T[iZy P(AilBita)
for n > 1, Bh---an-i-l € B with By = Bn—i—l and Az C B; ﬁBH_l, 1<i<n.
Here, it can be assumed equivalently that all A;’s are singletons {w;}. Such a
constraint, will be referred to as Csdszdr one.

Remark 4.3. It was observed in [11] that Cséaszar constraints correspond to
cycles in the bipartite graph Gp between (2 and B with the edge from each
B € B to each of its elements w. Since the incidence matrix of any bipartite
graph is unimodular [15, 19.2] Cséaszar constraints play a distinguished role in
the toric ideal induced by the incidence matrix of Gz, see [11, Proposition 3.4].
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Lemma 4.4. A cp P on (12,2, B) satisfies Csdszdr constraints if and only if it
extends to a cp P on (£2,27,2°\ {0}), in the sense P'(-|B) = P(-|B), B € B.

A proof is omitted; it is based on [4, (5.9), p. 349] that establishes a connection
between the constraints and the generation of a cp from a family of measures
ordered according to dimension.

Corollary 4.5. The closure of Qif”f consists of all cp’s on (£2,2°,B) that satisfy
Csdszar constraints.

Example 4.6. In the situation of Example 4.1 with m > 2, for B = {w,w’} with
w < w' let P(w|B) =1 and P(w'|B) = 0 with the exception P(0[{0,m}) =0
and P(m|{0,m}) = 1. Then P is a cp on (£2,A, ()) that violates the Csaszar
constraint with n = m+1and B; = {0,1}, ..., By, = {m—1,m}, B,, = {0,m}.
Thus, P does not belong to c/(@f”f).

Remark 4.7. It is not difficult to see that for B = (!22) every P € c/(ég”f) extends
to a cp on (§2,2%,2”\ {0}) uniquely, see the proof of [10, Lemma 4]. In general,
it is only a minor technicality not to admit the singletons of (2 in the sets B.

Remark 4.8. In [11], Csaszar constraints are interpreted as polynomials and are
used to define a multiprojective toric variety. The variety lives in the product of
the projective spaces of C? over B € B. A point z of this variety is a B-tuple of
points zp with the projective coordinates z(,|py, w € B. By [11, Theorem 4.3],
the mapping

2 Y pen Yuep F@) 2w Bl

Zw/eB |Z(w'\3)\
is a bijection between the nonnegative part of the variety and ) 5 5 Ap. (Note

that in the original definition of this mapping, denoted by v, the column a ;
must be replaced by its projection to the V-coordinates).

The mapping M; moves a cp P on (£2,2% B) linearly as
P =3 pen dwep f(w) P(w|B) = (ZBEB P(wlB))wEQ'

By Corollary 3.5, My restricts to the homeomorphism between c/ (@i ) and the
sum of Ap over B € B. On account of Corollary 4.5, the closure corresponds
to the nonnegative part of the variety from Remark 4.8. Hence, in the setting
of this section, the assertion of Corollary 3.5 is equivalent to the statement of
[11, Theorem 4.3].

By Corollary 3.5 and Remark 4.7, the family of cp’s on (£2,2%, B) with B =
{B C 2:|B| > 2} is homeomorphic to the permutahedron of Example 4.1 via

P (Ew/eﬂ\{w} P(w|{w’w/}))w69

which is the content of [10, Theorem 1].



10

FrantiSek Matuas

References

[1]

2]

3]

[4]

[5]

(6]

7]

18]

9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

Barndorff-Nielsen, O., Information and Ezponential Families in Statistical
Theory. Wiley, New York, 1978.

Chentsov, N.N., Statistical Decision Rules and Optimal Inference. Trans-
lations of Mathematical Monographs, AMS, Providence — Rhode Island,
1982 (Russian original: Nauka, Moscow, 1972).

Coletti, G. and Scozzafava, R., Probabilistic Logic in a Coherent Setting.
Kluwer Academic Publishers, Dordrecht 2002.

CUséaszar, A., Sur la structure des espaces de probabilité conditionnelle. Acta
Math. Acad. Sci. Hung. 6 (1955) 337-361.

Csiszar, I. and Matus, F., Convex cores of measures on R%. Studia Sci.
Math. Hungar. 38 (2001) 177-190.

Csiszar, I. and Matus, F., Closures of exponential families. Annals of Prob-
ability 33 (2005) 582—600.

Csiszar, I. and Matas, F., Generalized maximum likelihood estimates for
exponential families. Probab. Th. and Related Fields 141 (2008) 213-246.

de Finetti, B., Sull’impostazione assiomatica del calcolo delle probabilita.
Annali Univ. Trieste 19 (1949) 3-55.

de Finetti, B., Probability, Induction and Statistics. John Wiley & Sons,
London, New York, Sydney, Toronto 1972.

Matus, F., Conditional probabilities and permutahedron. Annales de
IInstitut H. Poincaré, Probabilités et Statistiques 39 (2003) 687-701.

Morton, J., Relations among conditional probabilities. August 2008, arXiv:
0808.1149v1.

Rényi, A., On a new axiomatic theory of probability. Acta Math. Acad. Sci.
Hung. 6 (1955) 285-335.

Rényi, A., Sur les espace simples des Probabilités conditionnelles. Ann.
Inst. Henri Poincaré, Probabilités et Statistiques 1 (1964) 3-21.

Rockafellar, R.T., Convex Analysis. Princeton Univ. Press, Princeton 1970.

Schrijver, A., Theory of Integer and Linear Programming. John Wiley &
Sons, New York, 1998.

Ziegler, G.M., Lectures on Polytopes. Springer-Verlag, New York 1995.



